Perturbation Energy Production in Pipe Flow over a Range of Reynolds Numbers using Resolvent Analysis
نویسندگان
چکیده
The response of pipe flow to physically realistic, temporally and spatially continuous (periodic) forcing is investigated by decomposing the resolvent into orthogonal forcing and response pairs ranked according to their contribution to the resolvent 2-norm. Modelling the non-linear terms normally neglected by linearisation as unstructured forcing permits qualitative extrapolation of the resolvent norm results beyond infinitesimally small perturbations to the turbulent case. The concepts arising have a close relationship to inputoutput transfer function analysis methods known in the control systems literature. The body forcings that yield highest disturbance energy gain are identified and ranked by the decomposition and a worst-case bound put on the energy gain integrated across the pipe cross-section. Analysis of the spectral variation of the corresponding response modes reveals interesting comparisons with recent observations of the behavior of the streamwise velocity in high Reynolds number (turbulent) pipe flow, including the importance of very long scales of the order of ten pipe radii, in the extraction of turbulent energy from the mean flow by the action of turbulent shear stress against the velocity gradient.
منابع مشابه
Stability analysis of stratified two-phase liquid-gas flow in a horizontal pipe
This study aimed at linear stability analysis of the stratified two-phase liquid-gas flow in a horizontal pipe. First, equations governing the linear stability of flow in each phase and boundary conditions were obtained. The governing equations were eigenvalue Orr Sommerfeld equations which are difficult and stiff problems to solve. After obtaining the velocity profiles of the gas and liquid ph...
متن کاملAnalysis of the nonlinear axial vibrations of a cantilevered pipe conveying pulsating two-phase flow
The parametric resonance of the axial vibrations of a cantilever pipe conveying harmonically perturbed two-phase flow is investigated using the method of multiple scale perturbation. The nonlinear coupled and uncoupled planar dynamics of the pipe are examined for a scenario when the axial vibration is parametrically excited by the pulsating frequencies of the two phases conveyed by the pipe. Aw...
متن کاملGlobal finite amplitude perturbations in medium aspect ratio pipe flow
Results of a numerical study on the finite amplitude global perturbations inducing transition to turbulence in pipe flow are reported. The aim of this analysis is to characterise the basin of attraction of the basic Hagen-Poiseuille flow (which is believed to be lineary stable for all Reynolds numbers Re) by means of the minimal amplitude of an initial global perturbation triggering transition....
متن کاملDirect Numerical Simulation of the Wake Flow Behind a Cylinder Using Random Vortex Method in Medium to High Reynolds Numbers
Direct numerical simulation of turbulent flow behind a cylinder, wake flow, using the random vortex method for an incompressible fluid in two dimensions is presented. In the random vortex method, the primary variable is vorticity of the flow field. After generation on the cylinder wall, it is followed in two fractional time step in a Lagrangian system of coordinates, namely convection and diffu...
متن کاملManipulating Flow Structures in Turbulent Pipe Flow
Two different tools, the non-empirical resolvent analysis and the data-based dynamic mode decomposition, are employed to assess the changes induced by transpiration in the dynamics of a turbulent pipe flow. The focus is on very large-scale motions. Both analyses permit the observation of streamwise waviness in the large flow structures and how the transpiration can inhibit fluctuation in locali...
متن کامل